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The symmetrization postulate (SP) that states of more than one identical particle are either symmetric or 
antisymmetric under permutations is studied from the theoretical and experimental points of view. The 
theoretical analysis is carried out within the framework of particle quantum mechanics; the field-theory ap
proach to identical particles using Bose, Fermi, para-Bose and para-Fermi quantization is not considered in 
this article. Particles not obeying SP can be accommodated in quantum mechanics, provided some modifica
tions are made in the usual quantum-mechanical formalism. The main modification is to replace the usual 
ray by a many-dimensional "generalized ray" as the representative of a physical state. The properties of one-
body measurements of systems having several identical particles are discussed, and the unobservability in 
such measurements of interferences between states having different irreducible permutation symmetries is 
pointed out. The condition of indistinguishability of identical particles is formulated precisely, and is 
analyzed both for interactions which conserve particle number and for general interactions which do not. For 
such general interactions, with the additional assumptions of time-reversal in variance and of coherence of the 
states having given values of charge, baryon number, and lepton number, it is shown that there is an absolute 
selection rule forbidding transitions between states 3:X which contain any number of particles of species which 
obey SP but at most one particle of a species not obeying SP, and states which violate SP. Since only states in 
5:X are now avaiable as initial states of experiments, this selection rule forbids production of SP-violating 
states in any experiment which is feasible at present. Because of this, presently proposed experimental tests 
of SP are in fact tests of the quantum-mechanical description of identical particles together with time-
reversal invariance and coherence of states in a given superselecting sector. The inclusion of internal vari
ables, such as isospin, for particles violating SP is discussed. A comprehensive discussion is given of direct ex
perimental tests of the SP selection rules. Such tests are more difficult to perform than appears at first sight, 
because in many cases the indistinguishability of identical particles or the conservation laws already imply 
the consequences of SP. Criteria for valid tests of SP are given. Several different types of tests are described, 
with illustrative examples of each. A survey is given of the direct experimental evidence for SP for the various 
particles. The Fermi character of electrons and positrons and of nucleons is accepted, as is the Bose character 
of photons. There is good evidence for the Bose nature of pions, especially from the absence of 2x decay of 
K2°. There is no direct evidence for the statistics of K, A, 2 , H, or /z. Feasible tests are proposed for the 
statistics of K and of those hyperons which have an asymmetric decay; but no such tests were found for the 
other hyperons or for /*. 

INTRODUCTION AND RESULTS interferences between odd and even waves cannot be 

WH E N dealing with identical particles in quantum o bserved. ^ 

mechanics one usually assumes the symmetri- . J
 l i 1S widely believed that SP is necessary for treating 

zation postulate (SP), i.e., states containing several ^ n t l c a
i

1 P a r t l d e s ^ a consistent way. I t is also widely 

identical elementary particles are, according to the ^ e l l e v e ^ t h a t lt 1S firm1^ suPPorted by experiment. In 
species, either symmetric (bosons) or antisymmetric f ac t> t h e a r g ™ * t s usually given to insert SP in 
(fermions). Such a postulate has very important ex- quantum mechanics are of an ad hoc nature, and do 
perimental consequences, which can be expressed as a n o t P r o c e e d ^avo idab ly from first principles.1 Also, 
selection rule (SP selection rule). m a n £ experimental facts which at first sight look like 

significant tests of the SP selection rule, simply follow 
States which cannot be represented by wave junctions of from the indistinguishability, e.g., the lack of observable 

the allowed symmetry type are absolutely forbidden. interferences mentioned above. 
_ . . . , . . . , Historically, SP has played a great role in the under-
This is an extremely strong condition very much g t a n d i o f a t o m k h e n o m a i n l a s a c o n s i s t e n t 

stronger than what is implied by the mdistmgmsha- o f i n s e r t i ^ p a u ] i i n d h ^ t h < j f o r m a l i s m o f 

bility of identical particles. Consider, for illustration, 
a system containing two ir+ mesons. To postulate that l The well-known rule that a tightly bound composite system of 
pions are bosons means that all the states with odd ? fixe,d .Tmb.tr o f b o s o n s a n d f.ermions i s B o s e o r F «J a i a c T d i n g , 
r
 r to whether there are, respectively, an even or odd number of 
angular momentum are absolutely forbidden, whereas fermions present [P. Ehrenfest and J. R. Oppenheimer, Phys. 
t h e indis t inguishabi l i ty of the two 7r+ only implies t h a t Rev. 37, 333 (1931)], requires modifications^ when a pair of the 

composite particles are close together and interacting. We are 
not concerned with this effect in the present paper. The general 

* Supported in part by the U. S. Air Force through the Air Force permutation symmetry of concern here is an intrinsic property 
Office of Scientific Research under contract AF 49 (638)-24. not derivable from bound states of bosons and fermions. 
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quantum mechanics. Then, since it was undoubtedly 
well established for electrons and photons, SP was 
assumed to apply to all the other elementary particles. 
This was assumed without too much question, and led 
to a great simplification in the theory. Granted the 
fact that it is an extremely good working hypothesis, 
we believe that both its theoretical justification and the 
experimental evidences for the corresponding selection 
rule deserve a careful investigation. Here is the subject 
of the present paper. 

The paper is divided into two parts, each of which is 
essentially self-contained, the first one about the theo
retical formalism, the second about the experimental 
confirmation. 

The first part consists in a general discussion of the 
problem of identical particles in quantum mechanics, 
without assuming SP. 

In the approach to this problem, one can use either 
the framework of particle quantum mechanics (QM) 
or that of field theory (FT). In QM, that is in the usual 
quantum-mechanical formalism using Fock space, a 
label is attached to each particle, and it is necessary to 
introduce permutation operators in order to express the 
identity of particles. In FT, identical particles are 
generated by a single field; no such things as permu
tation operators have to be introduced and the "sym
metry properties" of the states are essentially contained 
in the algebraic relations between field operators. Fields 
obeying the symmetrization postulate are characterized 
by bilinear algebraic relations, i.e., commutation rela
tions for Bose fields and anticommutation relations for 
Fermi fields. More complicated relations lead to fields 
which are neither Bose nor Fermi. For instance, the 
simple trilinear relations proposed by Green2 lead to 
the so-called parafields, which are in general neither 
Bose nor Fermi. The QM and FT approaches are known 
to be equivalent in the case of Bose and Fermi fields. 
It is still open, however, whether or not the equivalence 
hold in general. Here, we stick to the QM approach. 
The results which are arrived at are valid only for 
systems which can be consistently described in the 
framework of QM. We will discuss the FT approach 
(parastatistics) in a second paper. 

We start (Sec. LI) by formulating precisely the 
requirement of indistinguishability of identical particles, 
in terms of invariance of the physical properties of 
states in the permutation operation. This is the basis 
of the whole discussion. We first analyze its conse
quences for systems which conserve the number of 
identical particles, which is the only case considered in 
previous treatments (Sec. 1.2). Then, we make the same 
analysis in the general case (Sec. 1.3). To conclude this 
first part (Sec. 1.4), we discuss the question of inserting 
internal variables like isospin and charge conjugation 
in the definition of identical particles, and give a list 
of the most relevant SP selection rules. 

2 H. S. Green, Phys. Rev. 90, 270 (1953). 

It turns out that particles not obeying SP can be 
accommodated in the QM framework without violating 
any basic principle, pending some modification to the 
current formulation of quantum mechanics, the main 
one being to replace the usual ray by a many-dimen
sional "generalized ray" as the representative of a 
physical state. Thus, the requirement that identical 
particles be indistinguishable does not, by itself, imply 
SP. However, this requirement does impose severe 
restrictions on the physical observables of the theory 
and, because of this, also restricts the interactions which 
the particles can undergo. 

For interactions conserving the number of particles, 
there is a superselection rule which absolutely prohibits 
transitions between states transforming under in-
equivalent representations of the permutation group. 
It follows from this superselection rule that SP can be 
consistently inserted in the formalism, although it is 
in no way implied by the axioms of the theory. 

The study of the general case leads us to a much 
stronger result. We find that, under quite broad as
sumptions, the SP selection rule is verified in all states 
produced from the initial states which are at present 
available experimentally, i.e., states in which any 
particles occurring more than once belong to a species 
obeying SP. Call $x the space of state vectors belonging 
to this category. The precise statement of our result is 
that transitions between vectors in &x and vectors 
which violate SP are absolutely forbidden, provided 
that (a) the interactions are time-reversal invariant, 
and (b) each of the subspaces of ^ x corresponding to 
given values of the usual superselecting operators 
(charge, baryon and lepton number) is fully coherent. 
Condition (a), time-reversal invariance, seems firmly 
established by experiment. As for condition (b), it is a 
rather natural condition to insert in the theory, since 
it simply means that the algebra of all physical ob
servables is irreducible in each of the subspaces of &x 

considered. Thus, if a violation of the SP selection rule 
were found from states belonging to 3:X, one could 
seriously question the validity of the QM framework 
itself. 

The second part is devoted to a discussion of the 
possible direct tests of the SP selection rule and to a 
survey of the present experimental situation. The 
validity of SP is well established for electrons, nucleons 
and photons. We are concerned here with all the other 
elementary particles. We first give (Sec. II. 1) the main 
features of the tests. Then (Sec. II.2), we describe, with 
numerous illustrative examples, the different types of 
test which can be used. Finally (Sec. II.3), we make a 
survey of the present situation for pions, hyperons, 
kaons and muons. 

It turns out that, contrary to expectation, significant 
tests of the SP selection rules are very hard to obtain. 
The main reason for this is that there is no observable 
interference between SP obeying and SP violating 
transitions. At present, we have a convincing evidence 
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that pions are bosons. For all the other particles con
sidered, the situation is still inconclusive, and the 
possible tests at hand look quite difficult. The most 
accessible tests that we find are concerned with the A. 
We also propose a number of tests for kaons, which 
look feasible. On the contrary in some cases like S~ 
and like muons, the possibility of testing SP looks 
completely out of reach. 

Note added in proof. We have assumed in this article 
that weak interactions were rigorously PC invariant 
and that the K£ —» 2w decay was rigorously forbidden. 
Since this work was submitted, J. H. Christensen, 
J. W. Gronin, V. L. Fitch, and R. Turlay [Phys. Rev. 
Letters 13, 138 (1964)], have reported that K2° -> T+T-
is observed with a branching ratio ^ 2 X 10~3. They con
clude that PC is not rigorously conserved in weak inter
actions, and that K20 is not pure PC = — but contains 
a P C = + admixture with amplitude ~2.3X10~ 3 . An 
alternative to this conclusion is that PC is rigorously 
conserved, but pions are not bosons and the K20 under
goes a SP-violating decay with a probability amplitude 
which turns out to be ~ 2 X 1 0 ~ 3 times the probability 
amplitude of the SP-obeying Ki° —> ir+Tf~ decay. 
Whether weak interactions are actually rigorously or 
approximately PC invariant should be decided by 
further experiments (e.g., if K2° is a pure P C = — , 
K20 —» 2ir° is rigorously forbidden whether pions are 
bosons or not). Pending a clarification of the weak inter
action situation, our statements about the Bose nature 
of pions have to be qualified: a small violation of PC 
invariance in weak interactions looks a priori quite 
surprising, since it is hard to imagine an appealing 
model of weak interactions with such an approximate 
conservation law; however the alternative explanation 
stated above looks even more surprizing because, if 
pions are not bosons, it is even harder to understand 
why the SP-violating decay is so strongly suppressed. 
One_ should also modify slightly our discussion of the 
KQK° system: if PC invariance is violated by the stated 
amount the K1K1 and K2K2 decay modes still corre
spond to C— + , but the K1K2 decay mode corresponds 
to a state which is mainly C = — with a small admix
ture of C = + amplitude ( < 1 % ) ; even then, the ob
servation of the K decays permits a sufficiently precise 
determination of the quantum number C for use in 
our tests of SP for kaons. 

I. IDENTICAL PARTICLES IN QM AND THE 
SYMMETRIZATION POSTULATE (SP) 

1. The Indistinguishability of Identical Particles 

The discussion of identical particles in QM is usually 
given for systems with a fixed number of particles 
under the assumption of SP. Here, we want to deal, 
more generally, with systems with an arbitrary number 
of particles, and we will not assume SP. State vectors 
and observables are defined in the Fock space 9F, which 

is the direct sum of spaces 8{N\ each of which is spanned 
by vectors representing states with a fixed number NB 

of particles in each species s: 

«F=£ gm [(A0=(iv1,iv8,...^.,...)], 

g(N) is a direct product of spaces associated with the 
QM description of single-particle systems. Call Ss the 
space associated with a single particle of species s. We 
have 

F s f t W g & < * » > ® . . . ® «.<*•> ® • - - , 

gsw*) = ®gs. 

Inside each <S(iNr), one can define operators describing 
the permutation of particles belonging to the same 
species. These permutation operators form a group3 

that we denote by §>m. Their definition is given in 
standard text books and will not be repeated here. 
Any one of these permutations is a mere reshuffling of 
the labels attached to the particles belonging to the 
same species. Since these particles are identical, it must 
not lead to any observable effects. Thus, our basic 
requirement that identical particles cannot be dis
tinguished is expressed by the following: 

Dynamical states represented by vectors which differ only 
by a permutation of identical particles cannot be dis
tinguished by any observation at any instant of time. 

This requirement has consequences both on the 
properties of physical observables and on the law of 
evolution of states in the course of time. We first discuss 
these in the case of systems with a fixed number of 
particles and show that the standard arguments which 
lead to the symmetrization postulate in this case imply 
further assumptions of mere heuristic value and, con
sequently, can be put to question. Then we discuss the 
general case and show that, under very broad assump
tions, transitions between states obeying the sym
metrization postulate and states violating the postulate 
are absolutely forbidden. 

2. QM with a Fixed Number of Particles 

In this subsection, we restrict ourselves to one of the 
subspaces g^N) defined above. For simplicity, we con
sider only systems containing one species of particles. 
This will avoid inessential complications. Thus, 8(-N) 

is the space associated with systems of N particles of 
the same species. 

Permutation Invariance of Physical Observables 
and of the Evolution Operator 

The result of a measurement in a QM system always 
can be expressed as the expectation value of a suitably 

3 This group is the direct product of the permutation groups of 
Nij N2, • • 'N», • • •, objects, respectively. 
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defined Hermitian operator, A say. The fact that 
dynamical states represented by \u) and by the per
muted vector P | u) cannot be distinguished in a meas
urement is thus expressed by the equality 

(u\A\u) = {u\P-xAP\u). (1) 

This must hold for any \u). Applying it to the two 
superpositions |W)+OJ|.») and |w)+ia|t>) gives4 

(u\A\v)^{u\P~lAP\u), u,veSW 

or, equivalently, 
[ iV l ] = 0. (2) 

This must hold for all the possible permutations of the 
N identical particles. Thus, all physical observables 
(i.e., all observables associated with an actual measure
ment) must be permutation-invariant. 

Furthermore, dynamical states represented by \u) 
and P\u) at time 0 should not exhibit any observable 
difference at any later time t. The condition implied by 
this requirement on the evolution operator U(t) is 
readily obtained by replacing A by IF A U in the above 
argument: 

ZP,Ui(t)AU(t)-] = 0. (3) 

U*A U must be permutation-invariant, and this must hold 
for any physical observable A and for any value of t. 
Now, since the Hamiltonian of the system is a physical 
observable, it is permutation-invariant, and one deduces 
easily from this that U(t) is permutation-invariant too. 
Thus, the above condition is automatically fulfilled. 

Maximal Observation and Generalized Ray 

The permutation invariance found here is a rigorous 
invariance property. It holds for the evolution operator 
and for all physical observables. Contrary to what is 
implicitly assumed in ordinary QM, the state-vector 
space 8(N) is not irreducible with respect to the algebra 
of physical observables. This is precisely the situation 
which leads to a superselection rule. The discussion 
here will be slightly more complicated than the usual 
one because the algebra of the superselecting operators 
(i.e., the permutation operators) is not Abelian. 

The first point to be discussed is the preparation of a 
dynamical state through physical observations and the 
extent to which its representative vector can be defined 
in a preparation. A preparation consists in the per
formance of simultaneous compatible measurements on 

4 The proof given here has to be amended if g<W is split by 
superselection rules. Strictly speaking, our argument proves Eq. 
(2) if \u) and \v) belong to the same superselecting sector (as
sumed to be fully coherent), since it assumes that any linear 
combination of these two vectors represents a dynamical state. 
If \u) and \v) belong to different superselecting sectors, the two 
matrix elements below vanish and Eq. (2) still holds: the left-
hand side vanishes because A is a physical observable, the right-
hand side because in addition the action of P, which does not 
change the physical properties of states, a fortiori leaves the 
superselecting sectors invariant. The same amendments apply as 
well to the proofs of relation (3) and relation (14) below. 

the system, with the result that the state vector belongs 
to one of the common eigensubspaces of the corre
sponding commuting physical observables. Since these 
are permutation-invariant, the eigensubspace is also 
permutation-invariant. In general, it is reducible. 
Clearly, the most complete preparation is achieved 
when the eigensubspace is irreducible: no additional 
commuting physical observable can separate vectors 
within this eigensubspace. In that case, the preparation 
will be said to be maximal.5 It gives the maximum 
amount of information compatible with the indis-
tinguishability of identical particles. 

The interesting point to note here is that the irre
ducible eigensubspace may have dimension greater than 
1, in which case the lack of knowledge of the state vector 
is greater than in the ordinary QM, where the state 
vector is determined up to a phase or, in more technical 
language, the QM system is represented by a ray in 
Hilbert space: it seems natural to call the set of nor
malized vectors in such an r-dimensional irreducible 
subspace a "generalized ray" and to say that when the 
preparation is maximal, the state of a system of identical 
particles corresponds to a generalized ray, in analogy 
with the use of the word ray in ordinary QM. 

The indeterminate phase factor associated with a 
state vector in ordinary quantum mechanics does not 
cause difficulty in the interpretation of the theory 
because observable results are expressed in terms of 
absolute values squared of matrix elements from which 
the indeterminate phase disappears. It is important to 
realize that the larger indeterminacy with which we are 
faced here does not cause any difficulty either. 

To see this, we have to verify that measurable results 
on a state associated with a generalized ray do not 
depend on which state vector in the r-dimensional sub-
space is chosen to represent the state. Suppose that at 
time / we perform the measurement associated with the 
physical observable i o n a quantum system which was 
prepared at time 0 in the ray associated with the irre
ducible subspace 87T (y labels the irreducible repre
sentation and r stands for some additional quantum 
numbers). The result is equal to the expectation value 
of U^(t)AU{t) for the initial state vector. Now, since 
JPAU is permutation-invariant and since SyT is irre
ducible, Schur's lemma implies that the expectation 
value is the same for all normalized vectors in SyT: 

(u | IP (t)A U{t) | u) = (v | IP (t)A u(t) | v). 
\u),\v)eSyT. (4) 

One-Body Measurements 

One-body measurements deserve special attention. 
By a one-body measurement, we mean a measurement 
on each particle taken separately. Consider, for example, 

5 In the same line of argument, we have to replace the usual 
notion of complete set by the notion of maximal set of commuting 
physical observables, by which we mean a set, whose eigenvalues 
define subspaces irreducible with respect to permutation. 
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a two-electron system. The determination of their re
spective momenta, or of their respective spins, or of 
both momenta and spins, are typical one-body meas
urements. On the contrary, such quantities as the total 
spin or the relative angular momentum, which imply 
some correlation between the two electrons, do not 
correspond to one-body measurements. 

Strictly speaking, all the experiments in elementary-
particle physics are collision experiments and always 
consist of a set of one-body measurements, since the 
observations are performed on individual, widely sepa
rated, noninteracting particles. Thus, quantities which 
imply a correlation between the particles cannot be 
measured directly. Information about these quantities 
can be obtained only through the study of correlations 
between several sets of one-body measurements (e.g., 
angular correlation experiments), and their determi
nation through such studies always requires some 
assumption about the dynamical properties of the 
observed system. This will be illustrated in the examples 
given in Sec. I I . For the moment, we simply want to 
stress the importance of one-body measurements. 

In general, a set of one-body measurements, no matter 
how complete, is not maximal. 

The most complete set of one-body measurements is 
a set in which the dynamical state of each particle is 
completely determined (energy-momentum 4-vector, 
helicity, and possible internal quantum numbers such 
as various charges). Since this gives the list of quantum 
numbers of each particle separately, but does not give 
any information about the permutation symmetry of 
the many-particle states, such a measurement depends 
only on the sum of projection operators into each of the 
irreducible representations which may occur. Clearly, 
the number of these is in general greater than one, 
hence the measurement is not maximal. 

To see this in more detail, we take first the simple 
example of a system containing two identical particles. 
The measurement will consist in taking the probability 
that we find one particle in quantum state Xi and the 
other in quantum state X2. According to the standard 
rules of quantum mechanics, it is given by the ex
pectation value of the projector A(Xi,X2) onto the sub-
space corresponding to this set of quantum numbers. 
In general, this subspace will be two-dimensional, and 
a convenient orthonormal basis in it will be given by 
the normalized symmetric and antisymmetric state 
vectors. We denote these by \s) and |a), respectively. 
The projector can be written 

A(Xi,X2)=U><j| + |fl)<fl|. 

If we denote by | ̂ ) the state vector of the system, the 
desired probability is 

w(Xi,X2) = <^|A(\i ,X0|^> 

H<*1*>|H-K*|a>|'. (5) 
We draw the reader's attention to two features of the 

observed quantity w, which follow from the fact that 
the particles are identical and that A(Xi,X2) is per
mutation-invariant: (i) symmetry in Xi and X2; (ii) 
absence of interference terms between symmetric and 
antisymmetric states. 

Consider now the general case, where there are N 
identical particles in single-particle states Xi, X2, • • •, 
Xj\r. The observable to be associated with the measure
ment is the projector A(Xi,X2,- • • ,\N) onto the subspace 
£[X] spanned by all vectors deduced by permutation 
from the product vector | Xi) | X2) • • • | \N)> £[X1 is, of 
course, permutation-invariant. Except in the very 
particular case when Xi=X2= • • • =\N, it is reducible. 
In general, all the X's are different and S[X] is associated 
with the regular representation of the permutation 
group. As is well known, the decomposition of the 
regular representation contains each irreducible repre
sentation of the group a number of times equal to its 
degree. In particular, the representations which occur 
only once are the one-dimensional representations, i.e., 
the symmetrical and the antisymmetrical. 

I t is convenient to decompose £[X] into irreducible 
components £(7T)[X]. 7 denotes the representation to 
within an equivalence and r is an additional quantum 
number for representations which occur more than once. 
For a given representation (77-), we pick an orthonormal 
basis I YAir) (//= 1, 2, • • •, r, where r is the degree of the 
representation 7). Using this basis we get 

A ( A v « = E A ( 7 T ) W , ' (6) 
yr 

A ( r T) I X ]=i: |7Mr)<7Mr| . (7) 

The probability that a one-body measurement on a 
system in state \*$?) yields single-particle quantum 
numbers Xi, • • •, XJV is 

w(Xi,- • -,X^) = <^|A(Xi,- • -,X^)|*> (8) 

= E<*|A(7oIxl|*> 

= E !(*|wr)[2. (9) 
yr/x 

Again we note that this observed quantity has the 
properties (i) symmetry in the X's (ii) absence of inter
ference terms between vectors in inequivalent 
representations. 

For use in Sec. II , we state corresponding results for 
the T matrix. We first define T-matrix elements from 
an initial state | <p) to a final A^particle state | yfir) by 

T7tiT=(jfXT\T\(p). 

Up to phase-space factors, the cross section is given by 

< r (Xr - -X^)«E \Ty»r\2. (10) 
yry, 
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SP and Supers election Rule between Symmetry Types 

Vectors which transform, to within an equivalence 
according to a given irreducible representation of S(JV), 
will be said to have a given symmetry type. We define 
the degree of a symmetry type as the degree of the 
associated irreducible representation. We use the nota
tion Sy

(N) to denote a symmetry type, and <§y
(iN° to 

denote the subspace spanned by vectors of the same 
symmetry type, 7 labeling here the relevant irreducible 
representation. Particular subspaces of interest are 
those associated with the types of degree 1, namely the 
spaces 8s

m and &A{N) spanned by the symmetric and 
antisymmetric vectors, respectively. &m is the direct 
sum of all these subspaces: 

« ^ ) = 2 &,<*>. (11) 
7 

Maximal observations, as defined above, lead to 
state vectors of a definite symmetry type. Therefore, 
it is quite natural to advance the postulate that only 
one type occurs in nature, otherwise stated that all 
representative vectors belong to one and the same 
component Sy

{N) of &m. SP is a somewhat restricted 
form of this postulate, in that it is further assumed that 
the allowed component has to be either Ss{N) or 8A(N). 

That the postulate can be consistently inserted in 
the QM framework can be seen by proving that a 
supers election rule operates between vectors of different 
symmetry types, 

The proof follows essentially the same line as the one 
given in the paragraph on maximal observations. 

Applying Schur's Lemma, we note first that due to 
the permutation invariance of U(t), vectors in an irre
ducible representation remain in an equivalent repre
sentation in the course of time. Therefore vectors of a 
definite symmetry type keep this symmetry type in the 
course of time. Secondly, since physical observables are 
permutation invariant, they cannot have nonvanishing 
matrix elements between subspaces of different sym
metry type. 

Conditions under Which Only Bose and 
Fermi Particles Can Occur 

The literature of physics contains a number of dis
cussions which purport to show that only Bose and 
Fermi particles can occur. We want to point out that 
the arguments, when formulated correctly, always 
imply an additional assumption. 

Two rather independent arguments are usually given. 
Expressed in its simplest way, the first argument is 

based on the requirement that 

P\u) = c\u), | c | = l , (12) 

i.e., that permuting the particles in a state vector 
changes it only by a numerical phase factor. This 
requirement is precisely the requirement that the 

representative vectors transform as a one-dimensional 
representation of the permutation group, which in turn 
is the same as requiring that the representation be 
symmetric or antisymmetric. 

Relation (12) complies with our basic requirement 
of indistinguishability, but it is stronger. I t cannot be 
deduced from this requirement alone. One has to assume 
in addition that dynamical states which cannot be 
distinguished by any observation are represented by 
the same vector to within a phase factor. 

Proofs of the postulate have been produced recently6 

which are based on essentially the same argument. I t 
is assumed as a starting point that there "must exist a 
complete set of commuting observables/' which is, 
expressed in a more learned way, the same assumption 
about representative vectors as the one given above. 

This assumption is usually inserted in QM for heu
ristic purposes, and can be relaxed without contra
dicting any basic principle of the theory.5 

The second argument starts from the consideration 
of one-body measurements. I t is required that a com
plete set of one-body measurements, like the one 
described in the above paragraph, be maximal. Clearly, 
the only way of achieving this result is to postulate 
that state vectors must have a definite symmetry type 
taken among those which occur no more than once in <S[X1, 
that is, the symmetrical and the antisymmetrical. 
Hence, the symmetrization postulate. 

This requirement about one-body observations is 
very reasonable. I t means that a complete knowledge 
of the respective dynamical states of the particles taken 
separately entails a complete knowledge of the system 
as a whole. However, one could get along without it. 
Then, states prepared through one-body observations 
would have to be described by a density matrix. Some 
practical rule would be needed in order to define this 
density matrix, but no principle is opposed to this 
possibility. 

In summary, for systems with a fixed number of 
particles, there is a superselection rule between sym
metry types which permits one to insert SP in the 
quantum theory in a consistent way. However the 
postulate does not appear as a necessary feature of the 
QM description of nature. Whether it is followed by 
nature or not has to be decided by experiment. 

3. QM with a Variable Number of Particles 

We consider now the consequences of the basic 
requirement of indistinguishability in the general case, 
when the number of particles is no longer a fixed 
quantity. 

Some care has to be taken because the permutations 
are not operations defined in the whole Fock space $F 
but in each component S(N) of £F, for which the number 

6 J. M. Jauch, Helv. Phys. Acta 33, 711 (1960); J. M. Jauch and 
B. Misra, ibid. 34, 699 (1961); A. Galindo, A. Morales, and R. 
Nunez-Lagos, J. Math. Phys. 3, 324 (1962); D. Pandres, ibid. 3, 
305 (1962). 
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of particles is fixed. In the same way, observations where 
the indistinguishability comes into play are obser
vations on a fixed number of particles. Therefore, the 
physical observables which we consider in the present 
discussion are observables defined in a given subspace 

The superscripts (M), (N), • • • will be used to denote 
objects relating to the subspaces <§(M), <S(Ar), ••• , re
spectively. We call A (M) the projector on S(M\ A^M) a 
physical observable in <§(M). Note that 

A <M>=K^M)A WA ( i t f ) . 

As a straightforward extension of relation (2), we 
have the result that A^M) is invariant in any permu
tation P<M) of identical particles in S(M\ 

[ p w , i W ] = 0 . (13) 

Similarly, the permutation invariance of IftAU is 
generalized to the following permutation invariance 
property: 

lP(N)iA(N)U^^A(M)A(M)A(M)U^A(N)li==0, (14) 

This should hold for all values of /, for all possible 
subspaces SiM), 8(N), for all permutations in S{N\ and 
for all physical observables in S(M). 

Relation (14), of which relation (13) is a particular 
case, expresses the indistinguishability of identical 
particles. The discussion can be pursued along the same 
line as before, with the added complication that U(t) 
does not conserve the number of particles any longer, 
i.e., it has nonvanishing matrix elements between the 
components of Fock space. The permutation invariance 
of U(t) is lost, it is even meaningless, and the results 
which followed from this simplifying feature will have 
to be amended accordingly. 

All the previous comments and statements about 
maximal observations and generalized rays remain 
valid. The consistency of the notion of maximal ob
servation lies directly on property (14), from which 
the generalized version of (4) is easily deduced. All the 
statements about one-body measurements also remain 
valid. I t is worth recalling, that, in the absence of a 
postulate restricting the symmetry types, one-body 
experiments, no matter how complete they are, can 
never be maximal. 

On the other hand, the proof of the superselection 
rule between symmetry types, which was based on the 
permutation invariance of U(t), breaks down. Clearly, 
however, relation (14) imposes on U(t) very severe 
limitations that we now proceed to investigate. The 
principal aim of this investigation is to see whether the 
SP selection rules are mere consequences of relations 
(14). The answer to this question turns out to be in the 
negative. But the additional assumptions which are 
needed to derive the SP selection rules are not very 
stringent. 

First, we prove the following selection rule: 

Transitions from a given symmetry type to symmetry 
types of smaller degree are forbidden. 

Consider the transition from a state in the irreducible 
subspace SyT

{N) into a state in the irreducible subspace 
SpSM\ We call A 7 r W , Afi<rw the projectors onto these 
subspaces, and ry, r$ their respective dimensions. We 
want to show that 

Q=ApwMU(t)AyTW = 0 if rp<ry. (15) 

From relation (14) taken with Apa
m for the observable 

Am, it follows that Q*Q is invariant under all per
mutations P{N) within the irreducible subspace &yr

{N\ 
hence 

&Q = cAyTW, 

where c is the transition probability under consideration. 
Thus, if c^O, the range of Q*Q has necessarily dimen
sion ry. This cannot happen if r$<ry, since the dimen
sion of the range of Q*Q, like that of Q, is at most equal 
to Tfi in this case. Then Q*Q=0, hence the result (15). 
Q.E.D. 

In order to proceed further, we obviously have to 
make specific assumptions about U{t) or about the 
properties of Fock space. 

We assume from now on that U{t) is time-reversal 
invariant. Then the above selection rule also applies 
to the time-reversed transitions, which means that 
transitions to symmetry types of greater degree are 
also forbidden. Combining the two results, we conclude 
that : 

/ / the evolution operator is time-reversal invariant, the 
degree of the symmetry types is conserved in all transitions J 

In all present experiments, the initial states have at 
most one particle of a species, whose permutation 
character might be questioned (e.g., T, K, A, 2 , • • •), 
and have more than one particle only for species known 
to be Bose or Fermi, such as nucleons, electrons, or 
photons. We call 5* the subspace of all such states. 
Since only one-dimensional representations of the per
mutation groups occur in 5°*, all its states have sym
metry types of degree 1. Thus, if the above selection 
rule applies, symmetry types of greater degree are not 
accessible in present experiments, i.e., in each S(N\ 

7 As can be seen easily, this absolute conservation law generates 
a superselection rule. The assumption of time-reversal invariance 
leads to the following even stronger result which we state here 
without proof. Given a S^-irreducible subspace of S(iV), &yT

(N) 

say, the only nonvanishing transitions from its vectors into 8(ikf) 

are those to vectors, which have nonvanishing components in a 
certain S(^-irreducible subspace of g(M), &^M) say (we, of 
course, have ry=rp). This result can be expressed by 

AMU(t)AjTW**Afi.WU(t)AyTW. 
One also has, from time-reversal invariance, 

AWU(t)ApSu>=*AyrWU(t)Ati.<MK 
Applying this result to the case M—N, one easily concludes that 
transitions between different symmetry types in 8(isr) are for
bidden, even when U{t) does not conserve the number of particles. 
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the symmetrical and antisymmetrical states are the 
only ones, the production of which is not forbidden by 
this rule. 

Let us now investigate more closely the transitions 
from &x. The interesting property of $x is that maximal 
observations define a state vector in a unique way, 
apart from the usual arbitrariness in phase. The con
verse is certainly not true, i.e., to each vector in £FX 

there does not necessarily correspond an observable 
dynamical state of the system, since ^ x is decomposed 
into incoherent sectors by the superselection rules 
associated with the conservation of the charge Q, the 
baryon number B and the lepton number L. We denote 
these sectors by $XQBL- Each $XQBL may reasonably be 
assumed to be "fully coherent." By this, we mean that 
each vector in $XQBL does correspond to an observable 
dynamical state. If these conditions are met, deviations 
from SP are impossible to put into evidence in practice, 
as a consequence of the following theorem. 

Theorem: If the laws of motion are time-reversal invari
ant?* and if the supers electing sectors $XQBL of $x are fully 
coherent, transitions between states in $x and states in 
which some of the identical particles have not the symmetry 
type required by SP, are absolutely forbidden. 

To illustrate this, consider di—Tr+ states produced 
in a reaction such that ir+p —> nir+T+. The theorem 
states that, even if the T+ are not bosons, these states 
cannot be a superposition of symmetrical and anti-
symmetrical states; either all states produced in this 
way are purely symmetrical, or they all are purely 
antisymmetrical, as would be required by SP (the 
latter possibility is ruled out by experimental evidence). 
The same result obtains for di—ir+ produced in the 
reaction pp —> nnir+ir+, since protons are known to be 
fermions. 

The proof goes as follows. To start with, we suppose 
that &*• is fully coherent. The modifications required 
by the occurrence of superselection rules will be given 
at the end of the proof. 

We focus on a particular species s, whose symmetrical 
character is put to question, and consider first the 
transitions between states in $x and states in a given 
g(N) for w h i c h AT8> 1. The permutations considered all 
along refer exclusively to species s. 

Assume that there is a state \u)eS(N) which has a 
nonvanishing transition probability w at time t to a 
given state \x)&x, i.e., 

w can be rewritten as the expectation value over \u) 
of the operator | v)(v \, with the notation 

\v)^A^WHt)[X), | !»««<*> (NMO). 
[ v)(v | is a multiple of a projector on a one-dimensional 
space, the space of vectors proportional to \v). Ac

tivate added in proof. This theorem remains valid if ICP in-
variance is substituted for time-reversal invariance. 

cording to (14), it is permutation-invariant. Therefore 
\v) must belong to one of the two possible one-dimen
sional representations of the permutation group in S(N). 
Assume for concreteness that it is the symmetrical one. 
Then, only vectors which have a nonvanishing com
ponent in Ss(N) may have a nonvanishing transition 
probability to state | x)-

Next we prove that if transitions to |x) are from 
Ss(N) rather than &A(N), transitions to any other vectors 
of 5* from 8A{N) are forbidden. Assume that transitions 
from &Am to a given vector \x')&x are allowed; the 
relating transition probabilities are given by the ex
pectation values of | v')(vr \, with 

|tO=A<*>E/t«)|x ,>, \v')eSAW, IMI^O. 

Now, since £FX is fully coherent, there is a state associated 
with the linear combination 

|^> = X|x)+Mix,>, (X,/i^0) 

and the transition probability to this state is given by 
the expectation value of | z){z \, with 

\z)=\\v)+v\v'). 

Obviously \z){z\ is not permutation invariant, con
trary to what is required by the indistinguishability of 
identical particles. 

In conclusion, only vectors which have components 
in &s{N) (or only those with components in &A{N)) can 
perform transitions to 9:X. Because of the time-reversal 
invariance, the selection rule also holds for the time-
reversed transitions, that is, transitions from SF* to 8(N) 

lead only to vectors in <§s(iV) (or in 8A(N))-
Next, we show that the allowed symmetry type of a 

given species s is the same for all values of the number 
N8 of particles in this species. Assume for concreteness 
that it is symmetric for a given value of Ns. Transitions 
from a state in $x to a state with Ns particles in species 
5 lead necessarily to symmetric states. Now, the tran
sition probability must not change, if we add to the 
initial and final states one particle s sufficiently far 
away so that it does not interact with any other particle 
in the course of the reaction. This means that the sym
metry of the new final state (iWf-1 particles s) must 
be such that it is completely symmetric in the per
mutations of Ns particles. This condition excludes the 
antisymmetric type. 

Finally, we have to extend the result to the case 
when # x is no longer fully coherent but is split into 
superselecting sectors $XQBL which are fully coherent. 
Then, the whole Fock space $ is also split into super-
selecting sectors which we denote by $QBL- Clearly, the 
demonstration above can be carried through within 
each $QBL separately. Furthermore, the allowed sym
metry type of a given species s is the same for all values 
of Q, B, and L, since these numbers can be changed in 
an arbitrary way by adding to the initial and final 
states of a reaction a suitable number of widely sepa-
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rated noninteracting fermions or bosons8 without chang
ing the transition probability. Q.E.D. 

We repeat that, in practice,9 all states in elementary-
particle physics are produced in collisions from initial 
states belonging to 9:X. Consequently, these states 
should have the symmetry type required by SP and 
no deviations from the postulate should be observable 
in present experiments if all the conditions on which 
the above theorem is based are met.10 These conditions 
are: 

(i) validity of the QM description of identical 
particles within a Fock space. 

(ii) time-reversal invariance of the laws of motion. 
(hi) full coherence of each superselecting sector 

We feel that experimental tests of such a drastic 
selection rule as the SP selection rule are needed any
way, but it is good to realize that these experiments in 
fact test the set of conditions stated above. 

4. Inclusion of Internal Variables and 
Selection Rules 

In the QM description, we have some leeway in the 
definition of the species of identical particles. For 
instance, neutrons and protons could be treated either 
as two different species of particles, or as two different 
states of the same species with an internal degree of 
freedom. As is well-known,11 the two treatments are 
rigorously equivalent when the symmetrization postu
late is made. However, this is no longer true when the 
symmetry types are not restricted to that extent. 

Take, for example, the case of two pions of different 
charge, a7r+ and a7r° say, with momenta k' and k", 
respectively. If ?r+ and TT° are treated as different 
particles, this defines just one state vector to within a 
phase. If they are treated as identical particles with an 
internal charge variable, this defines two linearly inde
pendent state vectors, | k ' + , k"0) and |k"0, k ' + ) , or 

8 We know that electrons and nucleons are fermions. Any change 
in QBL can be achieved by adding a suitable number of these 
particles. Thus, increasing Q by 1 without changing B and L is 
obtained by adding np, a similar increase for B is obtained by 
adding n, the same for L by adding enp. 

9 One can, of course, imagine initial states outside 3*, for 
example the one realized by two independently produced beams 
of kaons, or of muons, etc. Thus a K+K+ scattering experiment 
with clashing beams would fall outside the domain of application 
of the general theorem above. Apparently, it also falls outside the 
present experimental possibilities. 

10 This conclusion and the point of view from which it was de
rived are different from the conclusions and approach of the para-
field theory. In parafield theory, which is a particular type of 
second quantized field theory, the requirement that Hamiltonian 
density be a local observable (in the sense of spacelike commuta-
tivity) leads to certain absolute selection rules, the most important 
of which is the rule that no para particle can decay entirely into 
ordinary particles. This rule, together with a nJX photoproduction 
experiment, leads to the conclusion that no presently known 
particle can be para. We will discuss the selection rules for para 
particles in a forthcoming paper. The rules (called "conservation 
of statistics'' rules for para particles) stated by S. Kamefuchi and 
J. Strathdee [Nucl. Phys. 42, 166 (1963)] are incorrect. 

11 A. Messiah, Quantum Mechanics (North-Holland Publishing 
Company, Amsterdam, 1962), English ed., Vol. II, Chap. 14. 

any normalized linear combination of these; then, 
assuming that pions are bosons means that only the 
symmetrical combination is allowed, and we again find 
just one state vector. 

Quite generally, consider r similar species of identical 
particles. By similar, we mean here two particles whose 
dynamical variables and states are unitary equivalent 
(e.g., n and p, e and n, T+ and K~, • • •; in practice, two 
particles with the same spin). Two similar particles are 
not necessarily identical, but their permutations can 
be defined in a consistent way. We consider dynamical 
states where we have Ns particles in species s ( y = l , 
2, • • •, r) in the individual states Ai(s), X2

(5), • • •, Ai\r,(s), 
respectively. If we do not put any restriction on the 
symmetry types, the number of thereby defined linearly 
independent state vectors is in general Hs=i r NsL This 
number goes up to ( £ 8 Ns)!, when we treat all particles 
as belonging to a single species with an internal degree 
of freedom, which can take r distinct values. On the 
other hand, if the symmetrization postulate is applied, 
there is just one state vector thereby defined in both 
treatments. 

I t is therefore quite important to decide what internal 
variables should enter the definition of each species of 
particle, if one wants to question the SP and submit it 
to experimental tests. In practice, the inclusion of 
internal variables is unavoidable when these variables 
have to be used to express some invariance properties 
of the interactions. Two invariance laws are of interest 
to us here, the isospin invariance and the charge con
jugation invariance. 

Isospin 

Since the strong interactions conserve isospin, isospin 
variables must enter the definition of all strongly 
interacting particles. Thus, the ir+> 7r°, T~ must be 
treated as the three charge states of a single species of 
particle, the pion, and the corresponding charge vari
ables must be permuted together with the space-time 
variables when one performs a permutation on a 
multipion state. 

One can always write the state vectors as a sum of 
terms, each of which corresponds to a definite value of 
the total isospin. This decomposition proves quite 
useful when, as is often the case, the charge wave 
functions of given total isospin have a definite symmetry 
type. 

We illustrate this procedure in the simple case of a 
two-pion system. Let ki and g» (i= 1, 2) be the momenta 
and charges of the two pions. Then the irreducible 
representations of the permutation P i 2 , 

(kiqiMqd ~~> (k2q2,kiqi) i 

are the symmetric states ty$ which have the usual Bose 
symmetry 

Pn^fsikiqiMq^) =^s(kiqi,k2q2) 
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and the antisymmetric states ^ a 

Pi2^a(kiquk2q2) = —ya(kiquk2q2). 

For this simple case, only one-dimensional represen
tations occur. Each type of state can be separated into 
states of given total isospin / and given value of its z 
component M = qi+q2. Using the fact that for two 
particles even / (odd I) isospin wave functions are 
symmetric (antisymmetric), we obtain 

^s,a(kiqi,k2q2)=<t>{0)(qiq^s,a(0)(kik2) 

+ E <t>(1M)(qiq2)^a^1M)(klk2) 

+ E <!>i2m(qiq2)^,J2M)(kik2). (16) 
JW=-2 

Here <£(1M) are the usual isospin wave functions. The 
(unnormalized) momentum-space wave functions yp are 
symmetric or antisymmetric as indicated by their sub
script. If we assume that pions are bosons, only one of 
these two possible symmetry types is allowed for the \f/ 
according to the well-known rule 

(Bose™) ( - ) ' = ( - ) ' , (17) 

and the forbidden \p vanish identically. Here / is the 
relative angular-momentum quantum number. To write 
this we have used the fact that symmetric orbital wave 
functions contain only even waves, and antisymmetric 
ones only odd waves. Relation (17) is characteristic of 
Bose pions and could be used for tests of SP for pions. 

Charge Conjugation 

Since strong and electromagnetic interactions are 
invariant under charge conjugation (and very probably 
all interactions are invariant under PC) we are led to 
treat a particle and its antiparticle as belonging to the 
same species. 

Systems of interest here are particle-antiparticle 
systems, since they can be chosen to be eigenstates of 
the charge conjugation operator C which, in this par
ticular case, is nothing but the permutation operator 
on the relevant internal variables. Typical systems of 
this kind are pp, K+K~~, and K°K° systems. The internal 
variable is the quantum number distinguishing particle 
from antiparticle, e.g., baryon number for pp and 
strangeness for KK. We denote it by e, e= + l corre
sponding to the particle and e= — 1 to the antiparticle. 
The operation of C replaces e by its opposite. 

For illustration, let us discuss in some detail the 
K°K° system. I t appears here as a particular di-kaon 
system, whose wave function ^(kie^k^) vanishes when 
€i+e23^0. Clearly, the C operation is equivalent to 
exchanging ei and €2 in this particular case. 

Now, exactly as we did with isospin on the 2w system, 
we can separate in the wave function the terms corre

sponding to the two possible eigenvalues of C. Thus, 
for a wave function of definite symmetry type we 
obtain 

*. .a(*l€i , fe2€a) = X ( + ) ( € l € 2 ) ^ f a ( + ) (khk2) 

+ X (- )(6l62)^a,S
(- )(^1^2). (18) 

Here x ( ± ) are the normalized internal eigenfunctions 
corresponding to the values C = ± l , respectively. They 
represent the state vectors 2 ~ 1 / 2 [ | H — ) ± | — + ) ] . All 
the other notations are identical to those used in dis
cussing the 2T system. If kaons are bosons, the sym
metry types associated with the lower subscripts are 
forbidden, and we find the well-known selection rule 

(BoseKK) C = ( - ) J (19) 

This rule is characteristic of Bose kaons and could be 
used for testing the SP for jcaons. 

Since we will discuss K°K° decays in Sec. I I in terms 
of the CP quantum number and the Ki and K2 decays, 
we include an explicit discussion of K°K° decays from 
this point of view. The only change we make in the 
discussion is to use the states | K\) and | K2), which are 
related_by a unitary transformation to the states \K°) 
and |JK°>. 

We use the convention 

|js?>=2-^(|ir1>+|js:2» |xo)=2-^(|ir1)- \K2)). 

Then x ( ± ) are represented by the following state 
vectors: 

X<+^2- i / 2 ( | l l> - j22>) , 

x ( - ) = 2 - ^ ( | 2 1 ) - | 1 2 » , 

i.e., x ( + ) leads to KiKx and K2K2 decays with the same 
probability, and x(~° leads to KXK2 decays. Therefore, 
the observation of the K decays, as is well-known, 
constitutes a straight measurement of the quantum 
number C, in spite of the fact that Kx and K2 are 
eigenstates of CP rather than C Note in passing that 

as could be expected, since C and P are equivalent to 
the permutation of the internal and orbital quantum 
number respectively in this case. For Bose kaons, we 
have C P - + . 

SP Selection Rules 

Quite generally, in systems of two identical particles, 
we have definite relations between internal and orbital 
quantum numbers, which follow from SP and can be 
used for testing it. Relations (17) and (19) are particular 
cases of such relations. We list here the whole set of 
relations which follow from SP with the usual connection 
between spin and statistics. 

Call X a particle and X its charge conjugate; let L 
denote the relative orbital angular momentum of the 
two-particle system, S its total spin (if any), and C its 
charge conjugation quantum number. We have 
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(i) for XX systems (e.g., 7r+7r+, AA, pp): 

( - ) * = ( - ) * ; (20) 

(ii) for XX systems (e.g., e+e~, 7r+7r-, KQK0) : 

C = ( - )*+* . (21) 

In the case of self-conjugate particles like 7 or 7r°, 
relation (21) still holds with C = + l. (Recall that 
Cy=~l,Cv*=+l.) ^ 

Call x a strongly interacting particle with isospin t, 
X its G-conjugate.12 

With the same notations as above and / for the total 
isospin, we have 

(i) for xx systems (e.g., TIT, NN, KK): 

( - ) * = ( _ ) < * « « ; (22) 

(ii) for xx systems (e.g., 2 2 , KK, A7V): 

G = ( - ) * + * " . (23) 

Relation (23) still holds for self-G-conjugate particles 
like pions, in which case G= +1. (Recall that G r = — 1.) 

Relations (20)-(23) are nonrelativistic versions of 
relations, which clearly hold even when the nonrela
tivistic approximation is not valid. We have exhibited 
them rather than the exact ones, because they make the 
subsequent arguments look more transparent. However, 
the reader should convince himself that relations ex
pressing the fact that a two-particle system has a 
definite symmetry character hold in general and not 
only in the nonrelativistic limit. The exact relations 
are conveniently written in the helicity formalism.13 

They are obtained from the nonrelativistic ones by 
replacing 

(a) ( - ) * by ( - ) » • # , 
(b) (— ) L by P for XX and xx systems, and by 

(—)2aP for X0£ and xx systems. 

Here, s is the spin of each particle, P the parity of 
the two-particle state, and H its "helicity permutation 
operator/ ' i.e., the operator which permutes the two 
helicity quantum numbers and changes their sign 
(X', X" —» — X", — X'). The change in sign is due to the 
particular convention of sign taken in the definition of 
the helicity. 

For example, relation (21) is the nonrelativistic 
version of the following exact relation for XX systems 
obeying SP: 

PC = H. (24) 

With more than two identical particles, we do not 
find as simple relations as those above any longer. The 
only property worthy of note is that the 7 = 0 charge 
wave function of three isospin 1 particles is antisym
metric. Consequently, the orbital wave function of a 

12 L. Michel, Nuovo Cimento 10, 319 (1953). T. D. Lee and 
C. N. Y&ng^ibid. 13, 749 (1956). Recall that for the zero charge 
term of a xx multiplet, we have G=C(—)7. 

13 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959). 

1=0, 3w system must be antisymmetric if pions are 
bosons. 

II. EXPERIMENTAL EVIDENCE FOR SP 
AND POSSIBLE TESTS 

From now on, SP will denote the symmetrization 
postulate taken with the usual connection between 
spin and statistics. 

In this section, we review the experimental evidence 
in support of SP for the known species of particles, and 
investigate the possibility of performing experimental 
tests of it when they are needed. 

There is no doubt that electrons and nucleons are 
fermions, and that photons are bosons. The evidence is 
particularly overwhelming in the case of electrons in 
view of the central role played by the Pauli principle 
in the dynamics of many-electron systems, i.e., atoms, 
molecules, and solids. For nucleons, the best evidence 
of all is given by the forbidden lines in the rotational 
spectra of homonuclear diatomic molecules, since they 
do not depend on the details of nuclear forces. The 
Bose nature of photons is revealed by the study of 
blackbody radiation and by the fact that quantum 
electrodynamics, in which the photon field is treated as 
a Bose field, quantitatively explains a wide range of 
electromagnetic phenomena.14 

The situation with all the other known species of 
particles (x, strange particles, ju> neutrinos, etc. • • •) is 
completely different. Large assemblies of identical 
particles cannot be produced in these cases. Further
more, the dynamics of their interactions is still very 
poorly understood. In order to see whether SP holds 
or not, one has to resort to direct tests of the SP 
selection rules on systems containing two or, at most, 
three such identical particles. Up to now, for all these 
particles but pions, no such tests have been produced. 
In the case of pions, we benefit already from a rather 
large body of information about multipion systems. 
Most of it turns out to be inconclusive, but not all. 
From the results about the pionic decay modes of 
kaons, we have definite evidence that the multipion 
production obeys the SP selection rule. All this will 
come out of our discussion. We will also show that 
many significant tests of the SP selection rule can be 
devised. None of the tests that we propose look easy 
to realize in practice, but at least some of them in the 
cases of K and A, are well within the scope of present 
experimental technique. 

This section is divided in three parts. The first part 
gives the principles and the general features of the tests. 
In the second part, we study, with some illustrative 
examples, the various types of tests that we may think 
of. The third part is devoted to a brief survey of the 
present experimental situation and of the possible tests 
for each species of particle. 

14 The Bose nature of photons is also expected from the fact 
that the electromagnetic field is measurable, and thus must 
commute with itself at space-like separation. 
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1. General Features of the Tests 

The tests that we are looking for must be performed 
on systems containing very few identical particles of 
the species considered. In practice, except for pions, it 
is very hard to produce systems which contain more 
than two identical particles. In this section, we shall 
focus on two-particle systems. Much of what will be 
stated applies with obvious changes to systems con
taining more than two identical particles. The only 
observations which can be made on such systems are 
one-body observations, and are conveniently expressed, 
as shown by Eq. (5), as a sum of two terms, each of 
which correspond to a given symmetry type: 

W(X1 ,X2)=|^ |5)l2+|<*|a}|2 . (5) 

The SP selection rule states that one of these terms 
must vanish. 

An important feature of such observations—which 
was already noted about Eq. (5)—is the absence of 
interferences between symmetry types, a consequence of 
the indistinguishability of identical particles alone. 
This point should be kept in mind, since many experi
ments, which at first sight seem to provide acceptable 
tests, must be rejected on this ground.14a To illustrate 
this, consider a 7r+7r+ scattering experiment. SP implies 
that the 7r+7r+ system does not contain any odd waves. 
However, the forward-backward symmetry of the 
angular distribution, which is the usual criterion that 
waves of a given parity do not show up in a collision, 
is no test of SP, since it is only evidence that inter
ferences between odd and even waves are not observed. 
In order to test SP, one could also think of exploiting 
the short range of the TT force and the subsequent 
barrier effects at low energy. Let us assume that the 
energy is so low that only S, P, and D waves are ex
pected to come in, the Z)-wave amplitude being an order 
of magnitude smaller than the P. Since the D wave 
interferes with the S wave, whereas the P wave does 
not, the P-wave contribution to the cross section has 
the same cos20 dependence as the interference and the 
same expected order of magnitude. Again, we do not 
find any distinctive feature which permits to test the 
absence of P waves. In fact, without a detailed knowl
edge of the dynamics of the ww interaction, there is 
absolutely no way of testing the Bose nature of pions 
in a 7r+7r+ scattering experiment. 

Another very crucial feature—which is also quite 
obvious from Eq. (5)—is that a set of one-body measure
ments by itself does not give any information about sym
metry types. The determination of symmetry types 
unavoidably requires additional information about the 

14a Footnote added in proof. In particular, the "tests of normal 
statistics for K mesons" by S. Barshay [Phys. Rev. 135, B152 
(1964)], which are based on the observation of interferences be
tween dikaon states of opposite parity are in fact tests that the 
two kaons can be treated as identical particles with a charge 
degree of freedom (and that isospin is conserved). We thank 
Professor Barshay for an interesting correspondence on this 
subject. 

observed two-particle system, which in turn requires a 
sufficient understanding of the dynamics of the pro
duction process. Thus, all tests of SP selection rules 
will necessarily imply some assumption about the 
interactions among particles. In order to be acceptable, 
a test must rely only on firmly established properties 
of the interactions. 

Such well-established properties as the hierarchy of 
strength of the interactions (strong, electromagnetic 
and weak) and their respective invariance laws can 
always be safely assumed.15 For strong interaction 
production processes—which represent the majority 
of the cases considered below—we may also safely 
assume that the forces have a short range. This leads 
to barrier effects, which set a limit on the complexity 
of the angular dependence of the wave at each energy, 
and suppress all partial waves but the S wave in the 
low-energy limit. Apart from their well-known invari
ance properties, the shortness of the range will be the 
only feature of the strong interactions which we assume 
in the tests discussed below. In the case of electromag
netic production, the assumption about the range has 
to be relaxed, but the weak coupling picture is valid 
and its consequences should be carefully explored. 
We shall also meet few but important cases involving 
weak interactions. Then, such assumptions as the PC 
invariance or the | Al | = | rule are needed; the first of 
these assumptions is quite safe; the second is more 
questionable. 

Going back to Eq. (5), we can see clearly now the 
way of building significant tests of the SP selection 
rule. Assume, for concreteness, that the two-particle 
system under observation is produced by strong inter
actions. As given by (5), the yield of the experiment is 
a sum of two terms, one SP obeying and one SP vio
lating. We must look for situations where: 

(i) the SP-obeying term is either forbidden by con
servation laws, depressed by barrier effects, or exactly 
calculable, 
(ii) the SP-violating term is neither forbidden by con
servation laws nor suppressed by barrier effects. 

Then, a nonvanishing yield for the SP violating term 
proves that SP is violated, and a zero yield is evidence 
that SP holds for this species. The two conditions above 
are quite crucial for the test to be significant. They will 
be referred to below as condition (i) and condition (ii). 

2. Study of Various Types of Tests 

To put some order in the discussion of possible tests, 
we tentatively classify them according to the way in 
which the set of identical particles can be produced. It 

15 In particular, we assume isospin conservation in strong inter
action production processes. Some care must be taken in the tests 
considered below, in which this assumption plays a role, since the 
deviations from the isospin conservation law due to electromag
netic effects look exactly like a small violation of the symmetri-
zation postulate. 
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can be produced in a decay or in a collision. We further 
distinguish between simple production processes, in 
which the set is produced alone (e.g., A —» XX, 
AB-* XX), and associate productions, in which it is 
accompanied by one or several particles of a different 
species (e.g., A —»CXX, AB—+CXX). We consider 
first simple decays, then simple collisions, and finally 
associate production processes. 

SP Forbidden Simple Decays: Evidences of 
the Bose Nature of Pions 

Multipion systems can be produced in the decay of 
many unstable particles, i.e., K± and K°, excited 
mesons (p, 77, co, etc.), and protonium, Dikaon systems 
can also be produced in this way. When the quantum 
numbers of the decaying particle are known, these may 
lead to significant tests of SP, if both conditions (i) 
and (ii) are met. This is best shown by treating specific 
examples. We shall treat here the decay of the co, then 
the decays of kaons into pions. 

The o) decay is a strong interaction process. The 
selection rule to be tested is relation (17). 

The o) is an / = 0 object. Its other quantum numbers 
are JPG=1—. Its 2w decay is forbidden by the SP 
selection rule. However, this cannot be taken as evi
dence for the rule, since it is also forbidden by G con
servation and condition (ii) is not met. As for its 3w 
decay, there are two features which, at first sight, seem 
to be relevant to the SP selection rule for pions: (1) 
the sixfold sector symmetry of the density of events on 
a Dalitz plot whose three energy axes make 120° angles 
with each other, and (2) the regions of depletion of this 
Dalitz plot where one of the pions has its maximum 
possible energy. The first feature has nothing to do with 
Bose symmetry; it follows from the absence of inter
ference between symmetry types, together with the 
1=0 property of co. The second feature is also not a test 
of SP, because, contrary to conditions (i) and (ii) the 
SP-violating contributions are more depressed by 
barrier effects than the SP-obeying ones. Thus we 
conclude that, contrary to first appearance, no signifi
cant test of SP can be expected from consideration of 
the 3ir decay of the co either.16 

16 A more detailed analysis of the co decay confirms this con
clusion. Since the co is 1~, the Dalitz configuration (LI) must have 
L-\-l even, L = l±l or L = l, and L+l^O. Thus, the only con
figurations allowed by J, P selection rules are those for which 
L — l^O i.e., (11), (22), (33), (44), and so on. If pions are bosons, 
the 3TT orbital wave function must be completely antisymmetrical, 
and the "even" configurations, (22), (44), etc., are forbidden. We 
see that the (00), whose absence is particularly easy to observe, 
is forbidden anyway by J, P conservation; the dominant con
tribution comes from the (11) term, whether pions are bosons or 
not. Furthermore, since, as a consequence of the indistinguisha-
bility of pions (and of I conservation), there is no observable 
interference between "odd" and "even" configurations, deviations 
from a pure (11) Dalitz plot come, in first approximation from 
the square of the (22) amplitudes and from the interferences 
between (11) and (33). It turns out that these two corrections 
have the same functional dependence in the Dalitz variables and 
cannot be distinguished. Thus, no practical test of the selection 
rule emerges from the study of the co. 

On the contrary, the decays of kaons into pions 
provide good evidences of the Bose nature of pions.17 

Note first that for 2w systems, relation (21) leads to 
PC=+. Since we believe that weak interactions are 
PC-invariant and that the Ki° and K20 are, respectively, 
+ and —, it follows that the decay of the K<? into 2ir 
is SP forbidden. Clearly, the decay is not forbidden by 
the conservation laws governing weak interactions. 
Condition (ii) is met, and the test is significant. Ex
periment shows that the K20 does not decay into 2w. 
This can be taken as a very good evidence that TT is 
a boson, together with a confirmation that weak inter
actions are PC-invariant. 

For 3ir decays of K°, the situation is reversed. The 
lowest Dalitz configuration for a spin 0 ( T W ^ system 
is (00) for odd PC and (11) for even PC, in the case of 
Bose pions. This decay mode is therefore expected to 
have a smaller partial width for Kx°, than for i£2°, 
because of barrier effects (the ratio of partial widths 
can be estimated to be at least 10~2). This, together 
with the typical (11) Dalitz configuration for the Ki° 
decay, would provide a significant test of the Bose 
nature of pions. 

Another evidence of the Bose nature of pions is 
found in the decays 

K±-*ir±Tfl, (25) 

Thw~ (26a) 

\ 
TTV. (26b) 

Here the selection rule to be tested is again relation 
(17). I t is found that the branching ratio of the charged 
to neutral decays of the Ki is in accord with a pure 1=0 
final state18 (c^.2:1) and that the K± decay rate is very 
much slower than that of Z"i19: r=w(K+—>TT+T0)/ 
w(K! —> 27r) = 1.4X 10~3. This is currently explained by 
the assumption that these weak decay processes are 
dominated by | Al | = | terms. Then, the transitions to 
1=2 states are strongly depressed. From J conservation, 
we know that the dipions are produced in S states. 
Since the SP selection rule forbids 1= 1 for S states, we 
are left with a dominant 1=0 in agreement with the 
experimental findings. Here again, the two conditions 
for significant tests of SP are met. The SP-obeying 
transitions are either forbidden (K+ decay) or exactly 
calculable (Ki decay), whereas the violating transitions 
are not forbidden by any further assumption. The 
weakness of the argument, however, is that the | Al| = | 

17 They have been recentlv discussed by H. C. von Baeyer, 
Phys. Rev. 135, B189 (1964).' 

18 This proves that pions are not fermions, regardless of whether 
or not the | A l | = J rule holds. See B. S. Thomas and W. G. 
Holladay, Phys. Rev. 110, 981 (1958) for a similar argument 
based on the r decay. See also the discussion of reaction (29) 
below. 

19 M. Roos, Nucl. Phys. 52, 1 (1964). 
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rule for weak interactions, which is anyway an approxi
mate rule, is not yet very firmly established. 

Simple Two-Body Collisions: Tests That A Are Fermions 

Next in simplicity for producing systems of identical 
particles, we find the simple two-body collisions, e.g., 

pp—^AA, 

3~£->AA. 

(27) 

(28) 

In practice, apart from reaction (28), all of them are 
reactions in which a charge-conjugate (or G-conjugate) 
pair goes into another charge-conjugate (or G-con-
jugate) pair20: 

AA-+XX. (29) 

However, the possibility of building tests on reactions 
of type (29) is very much restricted as a consequence 
of the following lemma. 

Lemma: Consider reaction (29) where an SP obeying 
charge-conjugate pair AA produces another charge-con
jugate pair, which may not obey SP. Then, SP violating 
transitions are absolutely forbidden by J, P, and C 
conservation (a) if both A and X have spin 0, (b) if one 
of them is a Dirac spin-\ particle and the other has spin 0. 
/ / both A and X are Dirac spin-\ particles, then SP-
violating transitions are those in which the total spin21 is 
not conserved (AS=^0); they are forbidden if one of the 
pairs is in an S state. 

The same results hold as a consequence of J, P, C, and 
I conservation for G-conjugate pair to G-conjugate pair 
reactions. 

The proof is straightforward. Here, we consider only 
the case of two charge-conjugate spin-J pairs and leave 
the other cases to the reader. Since they are assumed to 
be Dirac particles, the parity of each pair is opposite 
to that of its relative orbital angular momentum 
[ P = (—)L+12' Thus, conservation of P and C implies 
conservation of C(—)L , Since the A A pair obeys the 
SP selection rule (21), whereby C(—)L= (—) s , vio
lation of SP in XX is equivalent to a change of sign of 
(—)s in the transition, i.e., AST^O. Because of J and 
P conservation, these singlet to triplet and triplet to 
singlet transitions are allowed only if J=L in the initial 
and the final state, and they are forbidden when one of 
the L vanishes (S state), Q.E.D. 

An obvious consequence of the lemma is that con
dition (ii) has no chance to be met22 unless both A and 

20 Here, we assume A^X. There are simple tests based on 
scattering experiments, i.e., XX—»XX_or XX—>XX. Thus, in 
the charge-exchange collision K+K~ —» K°K°, SP forbids the pro
duction of K\K<L pairs at 90° cm. angle. We do not go into this, 
since these experiments are unfeasible with present techniques. 

21 For clarity we use all along the nonrelativistic language and 
speak of total spin, rather than the correct language with the H 
operator. 

22 We assume here, as is always the case in practice, that one 
of the particles, A say, is known to obey SP. If the nature of both 
A and X is questioned, we may find significant tests that at least 

X have spin J. Thus, no valid test of the Bose nature 
of 7r can be based on the analysis of reactions of this 
type; on the other hand, the fact that reactions of this 
type are observed, e.g., pp-^w+w~, insures that pions 
are not fermions. In the same way,_from the occurrence 
in nature of the reaction pp —> K°K°, we conclude that 
kaons are certainly not fermions, but no reaction of 
this type may lead to any valid test of the Bose nature 
of K. Better, if we assume that w are bosons, we cannot 
find any test of the Bose nature of K in wN collisions 
(e.g., T~p—>AK°K°) if the collisions are known_to be 
peripheral, since, in this case, the effective KK pro
ducing process is -rnr —» KK. 

We focus now on spin-| particles. The tests, if any, 
should involve a measurement of the total spin S of 
the two-particle system. Therefore, in practice, they 
apply only to particles like A, /x, whose polarization 
can be obtained from the angular correlation of their 
decay products. We shall discuss first reaction (27), 
as an illustrative example of reactions of type (29), 
then reaction (28). 

With reaction (27) our aim is to look for spin-non-
conserving transitions. The test will consist in preparing 
the pp pair in a pure triplet state and looking whether 
the production of singlet AA pairs is forbidden or not. 

The pure triplet initial state is obtained by taking 
the p beam and the p target completely polarized along 
some direction Oy perpendicular to the incident mo
mentum. In practice, it is possible to have only partially 
polarized beam and target. With partial rather than 
complete polarization, the situation is somewhat more 
complicated, but the procedure remains essentially the 
same. We shall not go here into these complications 
and shall assume complete polarization. 

Now, the cross sections as and at for the production 
in a given direction of singlet and triplet AA pairs 
respectively, are given by23 

H—(cosu) 
i- a2 

(AA pairs) (30) 

3 

a2 
1 (cosu) . 

„2 J 

These formulas hold whether the initial pp state is 
polarized or not. a is the corresponding total production 
cross-section along this direction, a ( ~ —0.66) is the 
asymmetric decay parameter of the A, and u is the angle 
between the two decay-pion momenta taken, respec-

one of them obey the postulate. For example, the decay of the 
Estate protonium into 2K\ (or 2TT0) is forbidden if either p or K 
(or IT) obey the postulate. If this decay were observed, we would 
have to conclude that both p and K (or -n) violate SP providing 
that we are sure that the protonium is in an S state. Since it is 
not observed, we are sure that at least one of the two species of 
particles obey SP and that the protonium is in an S state. 

23 C. Cohen-Tannoudji and A. M. L. Messiah, Nuovo Cimento 
23, 853 (1964). See in particular Note 7, 
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TABLE I. Selection rule for the reaction H p —» AA at low energy. 

Resulting 
angular 

rj SP forbidden SP allowed correlation 

+ 3Si -> »Si, 3 A tfo-^So {cosw)^:-^ 2 

^ i - ^ 1 ^ ! 3 5i-> 3 Pi (cos^) = Ja2 

'So -> 3Po 

tively, in the rest frames of their parent particles. The 
symbol (• • •) denotes the average over the directions 
of the two decay pions. Thus, the singlet and triplet 
contributions can be separately measured by means of 
a suitable angular correlation experiment. 

With the pure triplet initial state taken above, ors 

must vanish if the A is a fermion, i.e., the correlation 
coefficient (cos^) must be equal to its lowest bound 
- a 2 / 9 . 

Let us now discuss condition (ii). The only con
servation law which might come into play is the one 
associated with the reflection R around the production 
plane, when the latter is normal to Oy. Then, the initial 
state is an eigenstate of R (R= + ) and the conservation 
of R is equivalent to the conservation of the parity of 
wis, component of the total spin along Oy. This requires 
ms= + l or — 1 for the AA pair, which excludes singlet 
production. Besides this, barrier effects will suppress 
all but S waves in the vicinity of the threshold, which 
also excludes triplet to singlet transitions according to 
the lemma. Thus, condition (ii) is met if the energy is 
sufficiently far above threshold, so that higher waves 
are produced in the final state, and if the normal to the 
production plane is sufficiently far away from the initial 
direction of polarization. 

We turn now to reaction (28). It has already been 
studied in the literature for information about the 
(Sp) parity.24 We consider here the absorption in flight. 
The iT-shell absorption of a S~p atom leads to similar 
results. 

Like for AA pair production, the singlet and triplet 
contributions can be separated by angular correlation. 
The expressions for <rs and vt are those given by Eqs. 
(30) with —a2 instead of a2 everywhere. The reaction 
is exoergic 02^29 MeV) and conserve parity. There
fore, in the low-energy limits all waves but the S wave are 
suppressed by barrier effects in the initial state and the 
parity of the AA pair is equal to the intrinsic parity rj 
of the (Sp) system. If the A is a fermion, (—)s=v, that 
is art = 0 for 77= + and <7S = 0 for 7]=—. The operation 
of the SP selection rule is summarized in Table I. 
Clearly the forbidden transitions are forbidden by SP, 
and not by any conservation law or barrier effects. 
Thus, condition (ii) is met and the test is significant. 

24 L. B. Okun', I. la. Pomeranchuk, and I. M. Shmushkevich, 
Zh. Eksperim. i Teor. Fiz. 34, 1246 (1958) [English transl.: Soviet 
Phys.—JETP 7, 862 (1958)1; S. B. Treiman, Phys. Rev. 113, 355 
(1959). 

Associate Production: Application to Kaons 

We now discuss possible tests in the more compli
cated cases when the system of two identical particles 
is produced in a reaction together with one or several 
other particles, that is reactions of the type A —> CXX 
or AB —» CXX. Here, X denotes a particle of the species 
under study, without any restriction on the values of its 
internal variables1 Thus XX stands for what was de
noted by XX, XX, xx or xx in the Sec. 1.4. The tests, 
which can be thought of in these more complicated 
cases are very numerous and diverse. But they look 
much more difficult than those using simple production 
processes, because they always demand detailed in
formation about a certain selection of events, the yield 
of which is expected to be quite small. The tests, which 
we give below and in the Appendix, for illustration, 
may not be the easiest to perform in this wide collection. 
But their description should give a clear enough picture 
of the different types of test entering this category, and 
of the way one can be convinced of their respective 
significance. 

The SP selection rule to be tested will be relation 
(20), (21), (22), or (23), according to the case. One 
common feature of these relations is that they relate 
the orbital parity (—)L to internal variable quantum 
numbers. The tests will consist in producing the XX 
system with well chosen values of the internal quantum 
numbers, and then to find a way of checking that the 
waves having the SP forbidden parity are actually 
missing. For this purpose, we have to make use of some 
observable effect characterizing states with no odd 
waves, or states with no even waves. To be of any value 
to us, this effect must be quite general; i.e., its occur
rence should not depend on more detailed features of 
the dynamics of the production process than those that 
we are willing to admit and that were indicated in Sec. 
ILL 

To our knowledge, three effects may be of use and 
lead to three different types of test. The first two have 
to do with the vanishing of orbital waves of given 
parity at suitable angles. First, orbital waves with a 
given value M of the magnetic quantum number 
vanish at right angle to the quantization axis if their 
parity is opposite to (—)M. Second, orbital waves with 
a given value, + or —, of the quantum number R 
associated with the reflection through a given plane, 
vanish at right angle to this plane if their parity is 
opposite to R. The last useful effect (which works only 
for strong interaction processes) is the suppression of 
all but the S-wave contribution when the invariant 
mass nixx of the XX system approaches its threshold 
value. 

Let us discuss first the tests of SP using waves of 
given M {"M test"). 

We recall that the spherical harmonic YLM(0,<P) 
vanishes (like cos0) when 0 goes to \-K if (—)L+M is odd, 
whereas it keeps a finite value if (—)L+M is even. In 
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particular, we find the following results25 about the 
emission at d=\ir\ 

(a) In the absence of even-L waves, the contribution 
of M=0 characteristically vanishes like cos20. 

(b) In the absence of odd-L waves, the contribution 
of M = =b 1 characteristically vanishes like cos20. 

(c) No characteristic effect shows up in the inter
ference terms between M = 0 and M = db 1 when either 
even- or odd-L waves are missing. 

Consequently, in states for which even-L waves are 
SP forbidden, a possible test will consist in separating 
the M = 0 component along some quantization axis and 
checking that its contribution in the emission at right 
angle of this axis vanishes like cos20. In states for which 
odd L waves are SP forbidden, the same treatment has 
to be applied to the M=zLl component rather than 
M = 0. In proposing such tests, one must always make 
sure that condition (ii) is actually met. We illustrate 
this on the reaction 

K~p-*AKK. (31) 

As noted already, even- and odd-C contributions in 
the KK state can be separated by observing the decay 
mode of the kaons. According to the SP selection rule 
(19), KiKi (and K2K2) pairs must not occur in odd 
orbital states, K1K2 systems must not occur in even 
orbital states. To test this, we must manage to separate 
Af=0 and \M | = 1 dikaon waves. This can be done by 
selecting events in which the dikaon is emitted along 
the line of flight of the incident kaon (z direction). The 
desired | M | = 1 and M = 0 states correspond respec
tively to events in which the z component of the baryon 
spin does flip and does not flip. There is unfortunately 
no way of separating these states with an unpolarized 
target.26 

Let us assume that the protons are fully polarized 
along the z axis (Mp=+ J). Call, respectively, (0K<PK) 
and (07r<p7r) the spherical angular coordinates of the 
direction of K° emission in the rest system of the dikaon 
and of the direction of the decay ir in the rest system 
of the A. With obvious notation, the forward production 
amplitude of the dikaon, can be written : 

^l+=no spin flip+spin flip 

=A+(20£)o+A-(*£)i. 

Squaring, then averaging over <p angles and over the 
polarization of the decay nucleon of A, we obtain the 
following form for the forward cross section: 

<r+=(l+« cos0A) \F0(6K) | 2 + ( l ~ a cos0A) \Fi(0K) |2. 
25 For L+M even and \M\ = 0 or 1, | YL

M(br,v) I2 is found to 
be 1.25 times its average value \ir with a 5% accuracy. Thus 
unless cancellations occur through interference of different values 
of L, the contribution from (L-\-M) even is a priori quite large 
at 0=7r/2. 

26 With an unpolarized target, one can separate the contribution 
of the interference term between M = 0 and M — l states by meas
uring the azimuthal correlation of the K+ and of the decay pion 
of the A. As noted above, however, this is of no use for testing SP. 

a is the asymmetry parameter of the A decay, Fo and 
Fi are, to within inessential factors, the transition 
amplitudes corresponding to M = 0 and M = l waves, 
respectively. More generally, the forward cross section 
ap corresponding to target protons having polarization 
P along the z axis, reads: 

crp=ao(l+aPG COS#A) 

with 

l^o|2-|^i2 

G(fe) = • — - . 
|/M f+|jFi|2 

Thus, a measure of the ratio of the polarized to the 
unpolarized cross sections, permits the determination 
of the angular correlation function G(6K), which in 
turn lead to the relative contribution of M==0 and 
M = 1 waves through the formulas 

l^o|2 | ^ i | 2 

— = i ( l + G ) , = £ ( 1 - G ) . 
|Fo | 2 +|^ i | 2 |FoI 2+|^i | 2 

If kaons are bosons, odd waves are forbidden for 
K\Ki pairs. Then, for AK1K1 events, | F± |2 will vanish 
like COS26K at 0js: = f7r, whereas \Fo\2 will remain finite. 
For AK1K2 events, the converse result will apply, | FQ \2 

going to zero whereas l^il2 remains finite. Hence the 
test we are looking for. As is readily seen by inspection, 
J and P conservation do not forbid the waves which 
are forbidden by the SP rule, but L=l and higher 
waves are depressed by barrier effects for events in 
which the invariant mass MKK is not far enough from 
its minimum value 2niR> Thus, condition (ii) is always 
expected to hold in the analysis of AK1K2 events. In 
the analysis of AK1K1 events, however, one should 
keep away from the low invariant mass limit, and 
check that higher waves than L=0 are actually present, 
by observing the deviation from spherical symmetry 
in the angular distribution of the kaons in their center-
of-mass system. 

We draw the reader's attention to the similarity of 
the procedure followed in these tests with the analysis 
of Adair or its generalized versions.27 The choice of the 
range of solid angle toward the forward direction in 
which the dikaon is collected for this type of experiment 
is made exactly like in the Adair analysis (6<}</R) and 
for the same reason. 

We turn now to the second type of tests ("R tests"). 
It is performed on waves with a given value of the 

"plane reflection'' quantum number R, and uses the 
known property of spherical harmonics that waves, 
which have a parity opposite to R, characteristically 
vanish (like sin0) at right angle to the plane of 
symmetry. 

A very simple illustration of the possible use of this 
27 R. K. Adair, Phys. Rev. 100, 1540 (1955); S. B. Treiman, 

ibid. 128, 1342 (1962); C. Itzykson and M. Jacob, Phys. Letters 
3, 153 (1963). 
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fwclW 
W(K, K,) 

I FIG. 1. Ratio of cross 
I ,*• sections for K1K2 and 
I 0S K1K1 events versus 
I v* mass squared of the KR 
I jr system near threshold 
I yr for Bose kaons. 

i ^L. : : $. 

for testing SP is given by the reaction 

Z+He4~~>i?A4^+^+. (32) 

The plane of symmetry to be considered here is the 
plane of production of the dikaon, i.e., the plane parallel 
to the incident direction and to the direction of emer
gence of the center of mass of the K+K+ system. R is 
the quantum number associated with the reflection 
through this plane. It is known that K+ is a pseudo-
scalar, and that the hyperfragment HA

4 is a scalar 
particle like He4. Since R is conserved in this strong 
interaction process, we find that the dikaon produced 
in the final state has R=—. If kaons are bosons, this 
value is opposite to the allowed parity of the dikaon 
wave and the emission of K+ at right angle of the 
production plane is forbidden. To be significant, the 
test should be performed with dikaons emitted suffi
ciently far away from the forward (or backward) 
direction and with an invariant mass IURK sufficiently 
far above its threshold value 2MK, in order that odd 
dikaon waves be not forbidden by conservation laws 
or barrier effects [condition (ii)]. 

As a second illustration, let us go back to reaction 
(31). Again R will be the quantum number associated 
with the reflection through the production plane of the 
KK system. To build a test of SP, polarization of the 
target is still needed, but now it has to be perpendicular 
to the production plane. For simplicity, we assume 
complete polarization of the proton target in this 
direction. From angular correlations of the decay 
products of the A, it is easy to separate the final states 
with spin flip (i.e., spin of the A opposite to that of the 
proton) from those without spin flip. Since R is con
served, dikaons produced with spin flip have R=+, 
whereas those produced without spin flip have R——. 
For Bose kaons, KiK\ (and K2K2) pairs emitted at 
right angle to the production plane are necessarily 
associated with spin flip transitions, whereas K1K2 
emitted along the same direction are necessarily asso
ciated with non-spin-flip transitions. The discussion of 
condition (ii) is similar and gives the same result as in 
the "M test" discussed above. 

We turn finally to the third type of tests. It uses the 
barrier effect which, in strong interaction production 
processes, suppresses all but 5-wave contributions in 
the limit mxx —> 2mx> For this purpose, we have to 

select quantum numbers of the XX system associated 
with odd waves by the SP selection rule, and make sure 
[condition (ii)] that the S-wave production of XX is 
not also forbidden by conservation laws. Then a sig
nificant test that the SP selection rule holds, consists 
in observing if the production cross section vanishes 
like (mxx—lmx) times the appropriate phase factor 
when mxx —> 2mx-

To illustrate this, let us look again into reaction (31). 
We are led to compare the two channels 

AKlK1 (31a) 

K~p 
\ 

AKxK2. (31b) 

The 5-wave production is forbidden in the second 
channel, if kaons are bosons, whereas the first channel 

> remains allowed. We do not see any conservation law 
1 to forbid S waves in any channel. Better, the cross 

section for reaction (31a) can be used to some extent 
as a good measure of the order of magnitude to be 

; expected for reaction (31b), if the SP selection rule 
i does not operate. Thus, a significant test that kaons 
> are bosons is obtained by checking that: 
L (i) no relative S wave occurs in the K\K2 pair, i.e., 
- calling q the relative momentum, the square of the 
- matrix element vanishes at least as fast as q2 when q —> 0, 

or equivalently as MK1K2~ 2mK when m^K^ —> 2mK; 
1 (ii) channel (31a) is much more copious than channel 

(31b) in this limit. 
I Figure 1 illustrates the expected threshold behavior, 
> in the case of Bose kaons, of the ratio of the cross 

section for K±K2 events to that of K1K1 events, as a 
1 function of the square of the invariant mass of the 
I K°K° system. 
i In practice, occurrence of KK resonances in both the 
5 K1K2 (i.e., #0 production) and K1K1 channels close to 
r threshold may make this experiment more difficult than 
* could be expected at first sight. 

T 3. Survey of the Experimental Situation 

1 In the light of the above discussion, we now make a 
survey of the experimental situation for species of 
particles other than electrons, nucleons and photons. 

> 
* Pious 

T The nonoccurrence of SP forbidden decays for kaons, 
2 as mentioned above, can be taken as a conclusive 
- evidence of the Bose nature of pions, especially the 
f observed selection rule against the 2-K decay of the K20. 
1 We have looked systematically for other evidence, 

and have not found anything but rather complicated 
3 tests. We first have reviewed the decay modes of all 
1 the known unstable particles.19 As shown above, 
1 nothing significant emerges from the decay of the w; 
) we reach the same conclusion with the 17 and the p. For 
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all other excited mesons, the situation is* inconclusive 
because of uncertainties in the spin assignment.28 The 
case of the protonium is discussed in the Appendix. 
We find a possibility of test there, but it looks quite 
difficult. Possible tests using associate production are 
also discussed in the Appendix. 

Kaons 

For kaons, as well as for all species considered below, 
we do not find any evidence of the SP selection rule on 
the record. 

In fact, there does not seem to be any easy test 
available for kaons. We have seen that simple two-body 
collisions cannot lead to any test. For the same reason, 
the simple decay of the protonium cannot be, and is 
found not to be, SP forbidden. For all other unstable 
particles, e.g., the <j> which decays into Ki°K2°, the 
situation is still inconclusive, pending a measurement 
of the spin. Unless an example of SP-forbidden simple 
decay is found, one will very probably have to resort 
to associate production processes, in order to test 
significantly the Bose nature of kaons. 

The three types of tests in associate production can 
be applied to reaction (31), as shown above. The M 
and R tests can also be applied in a very similar fashion 
to the reaction 

K+p -> AK+K+. (33) 

The difficulty with M and R tests in reactions (31) and 
(33) is that they require suitably polarized proton 
targets. Tests of this type, which do not require this 
rather difficult technique, may be worth noting, e.g., 
the R test with reaction (32) described above, and the 
M test with the protonium decay described in the 
Appendix. Examples of tests using the low-mass limit 
in other reactions than (31) are also listed in the 
Appendix. 

Hyperons 

Two remarks are in order with hyperons. First, 
simple two-body collisions are no longer a priori ex
cluded for tests, and they should provide the easiest 
ones. Second, a test will always imply a measurement 
about the spin state of the hyperon pair, and there is 
no practical way of doing it, unless the hyperon has 
an asymmetric decay. Thus, we restrict ourselves to 
hyperons having an asymmetric decay (A, S + , etc., 
but not 2~), and look for tests of their Fermi nature in 
simple two-body collisions. 

The case of the A hyperon is the most favorable. We 
find two reactions, which provide significant tests, i.e., 

28 To be of use for this purpose, the spin assignment should not 
be based on the symmetrization postulate. Thus the case of / , to 
whom the spin 2 has been attributed on the ground that odd spins 
are excluded by Bose statistics [L. Bondar et al., Phys. Letters 5, 
153 (1963)], should be discarded. The same remarks apply to the 
<t> [P. L. Connolly, E. L. Hart, K. W. Lai, G. London, G. C. 
Moneti et al., Phys. Rev. Letters, 10, 371 (1963)]. 

FIG. 2. Dominant dia- J& 
gram in e+e~ —•> fi+jjT. rs^ 

av̂ —/ 
4* 

reactions (27) and (28). This has been studied in detail 
above. The experiment with reaction (28) looks a priori 
easier, since it does not require a polarized proton target. 

We do not find in nature any reaction like (28) with 
other hyperons. But reactions like (27) do exist for all 
of them, and lead in the same way to practical tests of 
the Fermi nature for all the hyperons having an 
asymmetric decay. 

Muons 

Since muons also have an asymmetric decay, we 
meet at first sight the same favorable situation for 
tests as for the A. In particular, one might expect the 
study of the reaction 

e+e~ - > fx+fx- (34) 

to provide a very direct means of testing the Fermi 
nature of muons, exactly in the same way as reaction 
(27) provided a test for the A. 

Here, however, the production process is due to 
electromagnetic rather than strong interactions. There
fore, the validity of condition (ii) has to be reinvesti
gated. 

The main point to make is that the coupling is weak, 
and that the dominant contribution to the production 
amplitude comes from the one-photon exchange dia
gram (Fig. 2). The corresponding term leads to a M+M~ 
state, which has the same transformation properties 
under inhomogeneous Lorentz transformation and 
under charge conjugation as the virtual photon, i.e., 
JPC=I m Remembering that the intrinsic parity of a 
pair of charge conjugate Dirac particles is odd, we 
conclude easily that this state is a triplet with even 
orbital angular momentum (or, more correctly, 
HP=—); therefore, the SP selection rule (21) is 
necessarily verified, whether the fx is a fermion or not. 
Condition (ii) is not fulfilled. 

In conclusion, to the lowest order in e2/-hc, reaction 
(34) does not provide any significant test of the Fermi 
nature of muons. Possible deviations from the SP 
selection rule come from higher order terms and can be 
displayed only by high precision measurements, which 
are hardly realizable in practice. 

The same remark applies to all production processes 
through the exchange of one virtual photon, whether 
simple or associate. Thus, contrary to expectation, we 
do not find any practically feasible test of the Fermi 
nature of muons. 



B266 A. M E S S I A H A N D O. W. G R E E N B E R G 

APPENDIX: DISCUSSION OF SOME SP TESTS 
FOR PIONS AND KAONS 

ij Decay 

No test of the SP selection rule for pions emerges 
from the analysis of the decay of the rj. 

The 7) has Jpc=0~+ and 1=0. 77-> 2TT is forbidden 
by J and P conservation, 77 —> S-zr cannot be a strong 
interaction process because of G conservation. Let us 
see whether the C conserving electromagnetic proc
esses 

^->7r+7r-7r°, (Al ) 

7} —» 7T+7T~7 , (A2) 

could be used for testing the SP selection rule PC= + 
in the thereby produced w+w~ system. With the z axis 
taken along the line of flight of the w° or the 7, one 
selects (T+T~) pairs with given values of M. Unfor
tunately, the M test cannot be applied, because the 
selected values of M> i.e., M = 0 for (Al) and \M | = 1 
for (A2), are precisely not those which are useful for 
the M test. In the decay (A2), where SP forbids even 
waves, one could think of testing the absence of S wave 
in the low-mass limit. But here again, condition (ii) is 
not met, because the 5-wave production is forbidden 
anyway by the 0 —» 0 selection rule in electromagnetic 
processes. 

Protonium Decay 

Since _the simple decay processes (pp) —> 2-rr or 
(PP) ~> KK cannot provide any test as a consequence 
of our lemma, we have to look into the decay modes 
into three or more particles. 

The decay of the protonium is known to occur from 
the K~ shell, i.e., from the two levels Jpc=Qr+ and 
1—. The difficulty in building tests there is that most 
often the respective contributions from these two levels 
cannot be measured separately. 

We have not found any test for Bose pions from the 
analysis of the 3w decay modes, i.e., (pp) —» 3TT° and 
(pp) —» ir+ir~w°. More complicated decay modes provide 
tests, which look hardly feasible. For example, consider 
the 47r decay mode: 

(pp) —» Tr+TTir+Tr- (A3) 

and select the events, when the four emitted IT are 
coplanar. Call R the operator of reflection through this 
plane. Since R=+ for these events, J=0 is excluded, 
hence C = —. For Bose pions, the two (TT+T~) pairs 
must have an opposite parity. They cannot be both in 
an S state at the same time. This absence of S-wave 
can be tested by observing the yield in the limit, when 
the invariant masses of both pairs simultaneously go to 
their threshold value. 

Turning to kaons, we look for tests using decay modes 
of the type (pp) —» CKK. The interesting cases turn 

out to be 
' ( p * ) - > w M , , (A4) 

^-tfPKiK*. (A5) 

We discuss the mode (A4). The same arguments apply 
to (A5), since the co and the p° have the same Jpc 

quantum numbers, i.e., 1 . The conservation of C 
implies Jpc=0~+ for the initial state. Then, take the 
direction of emission of the co for the quantization axis 
Oz. I t is possible, from angular correlations of the decay 
products of the co, to separate the contribution M w = 0 
from the contribution |MW | = 1. Selecting Ma=0, we 
obtain a M = Q state for the KJLi system. Then, the 
SP selection rule (19) forbids the kaon emission at right 
angle to the quantization axis. Inspection shows that 
the conservation laws forbid the 5 wave, but not the 
D wave in this dikaon production, and that barrier 
effects, although favoring P-wave emission, should not 
suppress very much the D wave. If kaons were not 
bosons, the KiK2 system should thus exhibit a Z)-wave 
contribution, especially at right angle to the z axis, 
where it would be the dominant contribution. Thus, 
we are in a case where condition (ii) is reasonably well 
fulfilled.29 

Associate Production of Pions (AB —» Cnn) 

We have not found any M or R test using a reaction 
which involves only spinless particles. Consider, for 
example the reaction 

7T±He4->He47r±7r°. (A6) 

The dipion is produced in an 7 = 1 state, and even 
dipion waves are SP forbidden. However, since the IT is 
pseudoscalar, the dipion is R=—, hence even dipion 
states do not contribute to the emission of pions at 
right angle of the plane of production, as a consequence 
of J and P conservation alone; this excludes the R test. 
A similar argument excludes the M test. Significant M 
and R tests can be built only with reactions involving 
spin-J particles, like w+p —> ^7r+7r+, and require polari
zation measurements, which make them unpractical. 

The only practical tests in sight are those based on 
the low-mass limit. They consist in producing a dipion 
in a 7 = 1 state, and testing the absence of S wave 
through observations near threshold. This can be done, 
for example, with the reactions 

m&T& (A7a) 

TT+p 
\ 

^ T T + T T 0 . (A7b) 

The amplitudes Ts and Ta for the symmetric and anti-

29 The decay into wKiKi is known to be copious. The same is 
expected for the decay into 00K1K2; it is unfortunately rather 
difficult to observe. 
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symmetric AW final states can be written 

Ts,a=(l/V5){2(n++)-(imt(p+0)+(pO+)l} 

Xila..C1)(k/
>k/0. 

The coefficients of the ^4's are the normalized charge 
wave functions, and correspond to the 1=2 and 1=1 
two-pion contributions, respectively. The momenta k', 
k" are associated with the pion charges in the same 
order. The subscripts on the A's refer to the symmetry 
under exchange of the momenta. The ^4's also depend 
on additional variables which are not relevant here. 
The probability w(k'+, k"+) for observing reaction 
(A7a) with momenta k', k" for the two 7r+ is, up to 
irrelevant factors, 

w(k'+y+)=iUAs™(k',v') | 2 + M«<2>(k',k") | 2 ] . 

The corresponding probability for reaction (A7b) with 
momenta k' for ir+ and k" for T° is 

w(y+,V'0)=&£\A§™-y/SAav\* 

where the ^4's should be taken at the values k', k" of 
their arguments. Here condition (ii) is obviously satis
fied, so we isolate the pure 1=1 contribution to reaction 
(A7b), according to the formula 

wi(k'+, k"0) =w(k '+ , k"0)+w(k"+, k'O) 
- > ( k ' + , k " + ) 

= \Aato\*+\A8v\*. 

If pions are bosons, w\ must vanish like g2=(k'--k")2 

times the appropriate phase space factor when q —> 0. 
In practice, this means that W\ must become negligibly 
small compared to w+o, w++ or w* in that limit. 

One can imagine many other reactions like (A7) 
leading to tests based on the same property, namely 
the absence of S wave in 1=1 dipion states. Of par
ticular interest are reactions of this type, where the 
two pions are produced in a pure 1=1 state, e.g., 

T^d-XlT^, (A8) 

£He3-*He47T+7r0. (A9) 

Note that reaction (A6) does not lead to any test 
because dipion S states are forbidden by J and P 
conservation alone. 

Other cases of interest are those in which three pions 
are produced in a pure 1=0 state, e.g., 

^->He47r+7T-7r°. (A10) 

Relative S wave, in each pair of pions, which should 
dominate in their respective low-mass limit, are for
bidden if pions are bosons. 

Associate Production of Kaons 

Tests of the absence of S wave in dikaon systems in 
the low-mass limit may apply either to KK in the K1K2 
channel, or to KK in the 1=0 channel. A typical 
example of the first case is given by reaction (31). 
Examples of the second case are given by the reactions 

»2°K+K+ (Alia) 

K+p 
NS+Z+X°, (Allb) 

xAAnK+K* (A12a) 

pd 
N AApK+K°. (A12b) 

Using notations analogous to those related to the dis
cussion of reactions (A7), we find for the contributions 
of the 1=0 and 1=1 channels the following results in 
the case of (All): 

wQ=w(k'+, k"0)+w(k"+, k '0)~w(k'+, k"+) 

w1=2w(k'+yk"+); 

and in the case of (A12): 

w0=w(k'+, k ,0)+w(k , ,+, k ' 0 ) - > ( k ' + , k"+) 

^ = M k ' + , k " + ) . 

For Bose kaons, wo/wi should go to 0 like (fn:KK—2niK) 
when the latter quantity goes to 0. 


